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A theory for the core of a leading-edge vortex 

By M. G. HALL 
Royal Aircraft Establishment, Farnborough, Hampshire 

(Received 28 February 1961) 

In  the flow past a slender delta wing a t  incidence one can observe a roughly 
axially symmetric core of spiralling fluid, formed by the rolling-up of the shear 
layer that separates from a leading edge. The aim in this paper is to predict the 
flow field within this vortex core, given appropriate conditions at its outside 
edge. 

The basic assumptions are (i) that the flow is continuous and rotational, and 
(ii) that viscous diffusion is confined to a relatively slender subcore. In  addition 
it is assumed that the flow is axially symmetric and incompressible. Together, 
these admit outer and inner solutions for the core from the equations of motion. 
For the outer solution the subcore is ignored, and the flow is taken to be inviscid 
(but rotational) and conical. The resulting solution consists of simple expressions 
for the velocity components and pressure. For the inner solution, which applies 
to the diffusive subcore, the flow is taken to be laminar, and certain approxima- 
tions are made, some based on the boundary conditions and some analogous to 
those of boundary-layer theory. The solution obtained in this case is a first 
approximation, and has been computed. 

A sample calculation yields results which are in good qualitative and fair 
quantitative agreement with experimental measurements. 

1. Introduction 
A core of spiralling fluid can be observed in the flow past a slender delta wing 

at incidence. I ts  position is shown in figure 1, which is a sketch of the over-all 
flow pattern. Separation of a shear layer takes place from the neighbourhood of 
each leading edge. The layer curves upward and inboard and eventually rolls up, 
forming a core in which the velocity and pressure fields are roughly axially sym- 
metric. This over-all pattern is well established experimentally. It appears 
essentially unchanged through the speed range and for most operating incidences 
as long as the leading edges are subsonic, and it is found also with slender wings 
other than deltas. Such a vortex core may have a diameter as large as one-third 
of the semi-span, and within it have been found velocities so high and pressures 
so low as to create some speculation and controversy. The aim in this paper is to 
predict theoretically the velocity and pressure fields within a core, given appro- 
priate conditions at its outside edge, and to explain the core structures that have 
been observed. 

The recent experimental studies by Earnshaw (1961) and Lambourne & 
14 Fluid Mech. 11 
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Bryer (1959) have established the structural form taken by the vortex core. 
Figures 2-5 show results at 70 yo chord of measurements by Earnshaw over a 
delta wing of aspect ratio one and 56in. centre line, at 14.9" incidence and with 
a free-stream velocity of loOft./sec. Figure 2 is a cross-sectional view showing 
the formation of the core. The closed contour drawn as a broken line marks the 

'Lines of 
traverse 

FIGURE 1. Basic pattern for flow over a slender delta wing at incidence. 

Possible edge of vortex core 

Spiral form 

5 

m k l i n g  edge 

FIGURE 2. Profiles of the circumferential velocity 21, 

derived from Earnshaw's measurements. 

outside edge of the core (its size is somewhat arbitrary), the choice being guided 
only by the criterion of axial symmetry. The ordinate rls is the ratio of the radial 
distance r from the axis of the core to the semi-span s (see figure 1). V, is the 
free-stream velocity. Figures 3-5 show pairs of profiles obtained by traversing 
through the core in a pair of mutually perpendicular directions (figure 1). 
Corresponding theoretical profiles are included also : these will be referred to 
after the theory has been presented. The striking feature here is that there are 
axial velocities (figure 3) within the core over twice the magnitude of the free 
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stream velocity and, associated with them, pressure coefficients (figure 5) of 
less than - 6. This stands in sharp contrast to the much smaller perturbations 
of the free-stream values elsewhere over the wing. 

'0 

TI8 

FIGURE 3. Experimental and theoretical profiles of axial velocity u. 

FIGURE 4. Experimental and theoretical profiles of circumferential velocity w. 

Certain other features of the observed core structure should be noted, since 
they suggest the form of a possible simplified model of the core. First, the shear 
layer from the leading edge diffuses rapidly (figure 2) and is barely distinguish- 
able after less than one convolution of a spiral, before the core is even reached. 
Secondly, the gradients of total pressure within the core (figure 5 )  are small except 
for a very slender region along the axis. It has been found that where the gradient's 

14-2 
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of total pressure are small the velocity and pressure fields are approximately 
conical, which is consistent with Jones’s wing theory. 

A simplified model of the vortex core is adopted here, with two distinctive 
properties that are suggested by the above. The first property is that the flow is 
continuous, i.e. it  includes no vortex sheet. Thus, the flow must be rotational to 
allow a convection of vorticity. The second is that diffusionof vorticity (associated 
with a loss of total pressure) is confined to a relatively slender subcore. In  this 
way the core is divided into a convective outer part and a diffusive subcore. This 
is justifiable for large Reynolds numbers, and it reduces the problem of solving 

4 8  

FIUURE 5. Experimental and theoretical profiles of total and static pressure coefficients, 
CH = ( p O - p m ) / & p P ~  and C, = (p-pm)/QipV: respectively. 

the equations of motion for the core to that of obtaining an inviscid outer solution 
for the convective part-for which the subcore is ignored-and then, using this 
outer solution to specify boundary conditions, obtaining a viscous inner solution 
for the subcore. In  addition to the distinctive properties, the fluid is taken to be 
incompressible, and the velocity and pressure fields are taken to be axially sym- 
metric. For the outer solution, these fields are taken to be conical as well, which 
implies a constant total pressure. Advantage will be taken of the fact that the 
core is slender to neglect terms of order ( ~ / x ) ~ ,  where, as shown in figure 1, x is 
the distance along the axis of the core from the apex of the wing. For the inner 
solution the flow is taken to be laminar, and the Reynolds number will be 
supposed to be large enough for approximations analogous to those of boundary- 
layer theory to be made. 

Mangler & Smith (1959) have previously obtained a solution for the vortex 
core in the course of investigating the flow past the wing as a whole. No specific 
steps were taken to elucidate the core structure in detail. The flow was treated 
by slender-wing theory, and only constant values through the core of circum- 
ferential and axial velocity were obtained. 
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In  the model of Mangler & Smith, the core consists of a tightly rolled vortex 
sheet (representing the shear layer) imbedded in a potential flow. This provides 
an exact representation of the core for the flow past a wing in the limit of infinite 
Reynolds number, and it is of interest to compare such a model with the present 
one. Corresponding profiles of the circumferential velocity component are 
sketched in figure 6. Observe that in the present model the steps due to the vortex 
sheet have been smoothed out, so that no part of the profile can be that of a 
potential flow. Because finite Reynolds numbers are admitted here, the profile 
passes smoothly through the axis no matter what its shape in the outer part of 
the core. This stricter condition is also satisfied by the profile of the hypothetical 

\ 

FIGURE 6. Qualitative comparison of different types of profile 
of the circumferential velocity v. 

Rankine vortex, or by a more realistic counterpart, Newman’s (1959) theoretical 
profile for a viscous line vortex of constant strength. A sketch of Newman’s 
profile is included in the figure. If the present profile for a leading-edge vortex 
were extended far enough from the axis, it would tend to that of a potential flow, 
as Newman’s profile does in the figure. Closer to the axis, the present profile 
shows (as sketched) a departure from potential flow, as also does Newman’s 
profile. However, the departure in Newman’s case is associated solely with a 
significant increase of viscous diffusion, and leads directly to a ‘solid body’ 
rotation, whereas in the present case diffusion is still insignificant and the depar- 
ture is associated with a convection of vorticity; of course, viscous diffusion 
eventually does become appreciable here also sufficiently close to the axis. 
Newman’s flow configuration was simple enough for him to obtain a neat approxi- 
mate solution of the Navier-Stokes equations without having to divide his 
vortex into outer and inner parts. 
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2. Outer solution 

When the velocity and pressure fields are axially symmetric, the Navier-Stokes 
equations for the steady flow of an incompressible fluid are, in cylindrical co- 

2.1. Equations of motion and their solution 

ordinates ( r ,  x), 
au aw w -+-+-= 0, 
ax ar r 

where 

au au l a p  
ax ar pax  u-+w-=---+vv2u, 

iiv av vw 
u-+w-+- ar r = v(vzv-;), 

ax 

a-+w--- aw ~2 = ---+v lap ( v 2 w 2) , aw 
ax ar r p ar 

u and w are the axial and radial velocity components, w is the circumferential 
velocity component, and p, p and v are the pressure, density and kinematic 
viscosity, respectively. 

The values taken by u, v and w in the outer solution will be denoted by U ,  T' 
and W respectively. Since the velocity and pressure fields are conical here, 
U ,  V ,  W and p will be functions of the conical parameter t3 = r /x  alone. Thus, for 
the outer solution, where the flow is inviscid (but rotational) and conical, equa- 
tions (1) reduce to 

The boundary conditions are taken to be 

(3) 1 e = o ,  W = O ,  

e = 0,, u = u,, v = v,, =p2, 

where the subscript 2 identifies quantities at the outside edge of the core 
0 = const. = 0,. The subscript 1 will identify quantities at the outside edge of 
the subcore. Observe that the solution is here formally extended to the axis, 
0 = 0,  following the stipulation that the viscous subcore is relatively slender. 
The tacit assumption is that the effects of the subcore on the outer part of the 
core are negligible. The first condition, that of zero radial flow on the axis, is an 
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important one. It expresses a continuity condition and implies an absence of 
sources or sinks. It appears to be the sole condition applicable to the axis of an 
inviscid rotating flow, for infinite velocities and gradients cannot be ruled out. 
The ratio VjU,  which is a measure of the helix angle of the spiralling streamlines, 
will appear frequently, and is therefore denoted by the symbol q5. The value 
cj52 may be related to the rate of increase of the strength of the core along its 
length or, what is equivalent, to the rate at which vorticity is fed in, by taking 
the circulation 2nr2V, around the core as a measure of its strength and differ- 
entiating: thus d 

- (27rrzG) = 27~U~O~cj5,. ax 

The equations ( 3 )  are easily integrated. Equations (2a)  and (2c) yield 

Equation (4), together with (2a) and (2b ) ,  enables V andp to be eliminated from 
equation ( 2 4 ,  which becomes 

Therefore, since the term O2 = (r/x)2 in the bracket may be neglected for a slender 
core,t the solution for W is 

Note that 2/( 1 + 295;) is positive; the possible ambiguity of sign in the expression 
for W2 has been removed by applying the condition W /  U c 8, which follows from 
Kelvin's circulation theorem. The substitution of (6) in equation (2a) leads 
to the result 

U 0 
UZ 
- = 1 - {2/(1+ 243 - 1)log (&) , 

and the substitution of (6) and (7) in (4) yields 

(7) 

Finally, the neglect of the term 8, in equation (5) implies that ( 2 4  can be 
reduced to 

and the expression for V 2  given by equat.ian (8) enables this to be integrated, 
with the result 

t Equation ( 5 )  can be solved without neglecting 02, but the expressions for the other 
velocity components then become unduly complicated for this particular problem. 
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2.2.  Discussion of the outer solution 

Equations (6), (7), (8) and (10) constitute a solution for the flow in the convective 
outer part of the core. Equations (6) show that the radial flow is always small 
and always directed inwards toward the axis, and that it decreases linearly in 
magnitude with decreasing distance from the axis. Also, the larger the ratio &, 

818, = r/r2 

FIGURE 7. Profiles from the outer solution, showing the effect of varying $,, for (a)  the 
axial velocity U ,  ( b )  the circumferential velocity V ,  and (c) the static pressure p.  

the larger is the radial in-flow. Some representative profiles of the axial and cir- 
cumferential velocity components U and V and of the pressure p have been 
calculated from equations (7),  (8) and (lo), respectively, and are shown in figure 7. 
The abscissae on the figures denote the non-dimensional distance from the axis 
of symmetry. Each figure is concerned with one of the velocity components or 
with the pressure, and the different curves in the figure correspond to different 
values of q5,. 

The figures show that U/U,, V/V, and the pressure drop ( p ,  - p ) / p  V i  all decrease 
with increasing distance from the axis, and all increase with increasing q52. It 
may be observed that the increase in axial velocity U and the drop in pressure 
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within the core may be very considerable. Such a pressure drop is to be expected 
in a spiralling flow, but the considerable increase in axial velocity is perhaps 
surprising. This increase is, however, a natural consequence of the original 
assumptions of conical field, etc., for the structure of the core. The phenomenon 
may be easier to understand if it  is noted that according to the theory the pressure 
gradient in the direction of the spiralling path of a fluid element is negative and 
sustained, though not in general large: the core is such that it entrains fluid and 
retains it in a pressure field, which subjects each element to a continuous acceler- 
ating force. Alternatively, it  can be shown that the vortex lines in the outer 
solution nearly coincide with the spiralling streamlines, so that there exists a 
circumferential component of vorticity for which the induced flow is axial. 
Since the distribution of this vorticity is symmetrical about the axis of the core, 
there will be, in effect, a focusing or concentrating action which yields a high 
resultant velocity along the axis. 

The outer solution is clearly singular on the axis of symmetry, but even as the 
axis is approached the solution becomes invalid. Towards the axis, the gradients 
of vorticity become increasingly large, so that it is to be expected that viscous 
diffusion will become appreciable. In  addition, according to equation (10) the 
pressure p becomes negative for sufficiently small 8/8,. It is supposed here, 
however, that before this occurs the diffusion effects have invalidated the 
solution. An aposteriori check of the viscous diffusion effects implied by the outer 
solution is therefore worth while. 

The procedure is to feed back the above (inviscid) solutions for U ,  V and W 
into the full Navier-Stokes equations (l), and to compare the magnitudes of the 
terms representing inertia and viscous forces. It can be shown, if this is done, that 
the outer solution implies negligible viscous forces in the axial direction. But 
circumferential viscous forces are implied: the ratio of inertia to  viscous terms, 
if we assume that q5, is not large compared with unity, is found to be 

The product 

is of special significance. It is clear that in a region of dimensions 8 = O(q5g1R;*) 
diffusion effects must become appreciable, and the outer solution must become 
unrealistic. Thus it can be deduced from the outer solution that a diffusive 
subcore exists and, moreover, that circumferential viscous forces play the 
dominant role in its generation. Note that this subcore can be made as slender 
as desired by taking R, sufficiently large. The limit (with q52 bounded) R, -+ co 
therefore constitutes the formal condition for the present model of the vortex 
core t o  be self-consistent, because only in this limit will an inviscid outer flow 
which is conical be compatible with an inner diffusive subcore which cannot be 
conical. Note finally that as R2 -+ co then, for the edge of the subcore, 8,/8, -+ 0, 
and, from equations (7) and (8), 

772 
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3. Inner solution-f 
3.1. Approximation of the equations of motion 

Equations ( 1 )  apply to the diffusive subcore, but they are intractable as they 
stand. In  this subsection, approximations will be made to simplify the equations. 
What is wanted is an approximate solution valid for large but finite Reynolds 
numbers. The first step would be to make the usual boundary-layer assumptions 
(that the Reynolds number tends to infinity, and so on), and to seek an inner 
solution which satisfies the proper conditions on the axis of symmetry and tends 
asymptotically to the outer solution with increasing distance from the axis. 
If no more than this is done, however, it  is found that the equations of motion 
are still intractable, mainly because large variations of the axial velocity are not 
excluded. Fortunately, the boundary-layer assumptions can be coupled with 
other assumptions based on the boundary conditions. The symbols u, v, w will 
be retained for the velocity components within the subcore. On the axis of 
symmetry, r = 0, a diffusive fluid satisfies the conditions 

au 
ar 
- = 21 = w = 0. 

At the edge, r = r,, of the subcore, we have, in the limit as viscous diffusion 
becomes negligible, 

u =  U,, v = V ,  and p =pl. 

The assumptions suggested by the above boundary conditions are, f ist ,  that 

u = const. + O(su),  ( 1 l a )  

where E is small; secondly, since the outer solution suggests ( $ 2 . 2 )  that axial 
viscous forces will not be significant in the outer part r > 6, say, of the subcore, 

and, thirdly, w = O ( W )  = O(Wlr/rl). ( 1 l c )  

The first of these, ( l l a ) ,  will be justified eventually: it  is not introduced merely 
to simplify the equations of motion. An expression for E ,  

can be deduced, by establishing from equation ( 1  b )  that 6 = O(XRi*) and 
integrating aujar. But i t  can be shown from the outer solution that 8, Rt is large 
for large Reynolds numbers. If E is to be small, therefore, a limit will have to be 
placed on the magnitude of 8, Rt. 

The assumptions similar to those made in boundary-layer theory are that 
(i) the Reynolds number is large or, formally, R, -+ co, and (ii) the circum- 

f A more detailed account has been given (1960) by the author. 
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ferential viscous forces, which have the dominant role in generating the subcore, 
must be as important as the circumferential inertia forces (within the subcore) 
and must be negligible at the edge. 

These two sets of assumptions-from the boundary conditions and from 
boundary-layer theory-enable the orders of magnitude of the terms in equations 
(1) to be specified in such a way that solution becomes practicable. Now, as 
pointed out in the previous section, the condition R, -+ 00 implies that 4/8, + 0 
and that 4; -+ 0. The basis of the present approximation to the equations of 
motion will be to make use of the smallness of #: and 6 to simplify the equations. 
@ will be treated as a small parameter; unlike 8,/8,, it remains a meaningful 
parameter for finite Reynolds numbers. It can be deduced from the outer solution 

2w, 2w, - - 1 that, for $1” + 0, 

4; = -m - -s,q - -B,U,, 
so that 4: is a measure not only of the helix angle of the spiralling streamlines 
at the edge of the subcore but also of the rate of convergence of the streamlines. 

On neglect of the terms in equations (1) that are smaller by a factor of either 
q5: or E ,  the equations reduce to 

au aw -+-+- = 0, 
ax ar r 

As the equations stand, they are still intractable, but clearly if some approxi- 
mation to w could be substituted in (14 G), so that the equation yielded a satis- 
factory first approximation to v, completion of the solution would be straight- 
forward. Now, for r < rl, the terms in (14c) containing w become negligible 
anyway, so that any chosen w need be an adequate approximation to the correct 
w for larger r only. The obvious choice, therefore, is the formula given by equa- 
tions (6) respective to the outer solution, namely 

Thus w is assigned its correct magnitude and gradient at r = rl, and its correct 
magnitude at r = 0. Substitution in equation ( 1 4 ~ )  yields 

The equations (15), (lad), (14b) and (14a) can be solved successively, to yield 
first approximations to v, p, u and w, respectively. This would in fact be the first 
step in a process of solution by iteration. In  this process the adoption of the 
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formula given by the outer solution for w would constitute the 'zeroth' approxi- 
mation. However, only the first approximations will be sought here, and whether 
the process of iteration is justified will be put aside. 

3.2.  Transformation of the equations and the form of the solution 

The equations for the subcore are still not easy to solve, because they contain 
partial derivatives. This would be remedied if, by transformation of the variables, 
similar solutions could be found. A new independent variable 

is therefore introduced to replace r as the measure of the radial distance from the 
axis. For the region within which viscous diffusion must, according to the 
a posteriori check, become appreciable, it can be shown that c2 = O( l/@); and, 
for the edge of the subcore, 6: 9 l/@. Similar solutions of the form 

a = Ul(")f (0, v = q(4 d 5 ) ,  61 = const. (17) 

will be sought, where d f ldc  = g = 0 at g = 0 and f = g = 1 at 5 = Cl. The value 
of may be arbitrarily chosen, provided it is large enough to satisfy the condition 
5: 

Equations (15), (14d), (146) and (14a) are now transformed by substitution 
of the new variables f ,  g and 5. After some labour, in which the outer solution is 
used, terms that are smaller by the factors 4: and e are again neglected, and the 

and not so large that the assumption (1 1 a )  is invalidated. 

5 1 dg @ 
result is 

""+(-+-)-+(&)g=o, dP2 2 5 d 5  

It is clear from equations (18) to (21) that the form of solution specified by equa- 
tions (17) is compatible with the equations of motion. Therefore, since the 
boundary conditions are already satisfied, the similar solutions (17) exist, and 
the calculations of the solutions can proceed. 

3.3. Solutions of the transformed equations 

Once a solution for g is obtained from equation (18), solutions for p ,  f and w are 
readily derived. The solution of equation (18) is 

9 = ha($;, 6) = k5exp ( - i 6 2 )  lFI@ - M, 2,  
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where Ic is a constant fixed by the boundary condition g = 1 at 5 = cl, and lFl 
is a confluent hypergeometric function (see, for example, Jeffreys & Jeffreys 
1956, ch. 23). 

By substituting kG(@,  c)  for g ,  equations (19) and (20) can be integrated to 
yield p and f respectively, and substitution for dfldt; in (21) then enables w to 
be calculated. The results may be expressed in the forms 

f = 1 + kZ#[(Fl -m + $?(a1 - a) Pll, (23) 

where F ,  H and P are functions of q5; and c, given by 

and a and B are functions of 5 only, given by 

To the above may be added an expression for the total pressure p0,  derived from 
equations (22) to (25)  and (17): 

Po = Pol( =Po,) - i P W 1  - k2Q2) 

- k2#tp U?[(P1- P )  - (F1- F )  - #:(a1 - 01.) PI]. (26) 

The functions F ,  0, H and P have been computed for 4: ranging from 0 to 0.6 
in increments of 0.1, and the numerical results have been tabulated by the 
author (1960), together with numerical values of a and /3. Curves of the function 
G ( = v/(kV,)) are plotted in figure 8. For large 5, the asymptotic form of the con- 
fluent hypergeometric function gives 

As might be expected, this is the same as would be obtained from equation (18) 
if the viscous terms therein were neglected. 

Comparison of the solution for G with its asymptotic form indicates how viscous 
diffusion effects vary within the subcore. Included in figure 8 are the asymptotic 
curves for the cases #? = 0 and @ = 0.6. It can be seen from these that the 
effects decrease rapidly as 5 increases, up to about 6 = 6, and that by c = 10 they 
are small. A close examination shows also that the decrease is more marked for 
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4; = 0.6 than for 4! = 0. Thus, the comparison shows the results to be consistent 
with the condition f;: & I/#: the magnitude off;  at the edge of the subcore must 
indeed be large for diffusion effects to be vanishingly small, and the smaller the 
magnitude of 4; the larger must & be. But the comparison shows, in addition, 
that it  will be sufficient for a f i s t  approximation to take cl equal to, say, 8 or 10, 
independently of 4;. For although a smaller q5; will imply that diffusion effects 
will persist to a larger f;, those effects will be small enough to be neglected anyway 
for 5 beyond 8 or 10. 

6 
FIGURE 8. Curves of the function G from the inner solution, together 

with asymptotic solutions, for different values of 4:. 

Equations (22) to (26), together with (17) ,  constitute an approximate inner 
solution, and describe the structure of the diffusive subcore. On the axis the 
circumferential and radial velocity components, v and w, are zero, and so also 
are the radial gradients of the axial velocity u, the static pressure p ,  and the total 
pressure p,,  with u taking a maximum value and p and p ,  minimum values 
there. The circumferential velocity is a maximum at a distance from the axis 
which decreases with both increasing q5; and increasing R,. The radial velocity, 
which describes an inward flow, grows with increasing distance from the axis, 
from half the magnitude given by the outer solution. The circumferential and 
axial components, and the pressures, have magnitudes a t  the edge of the subcore 
equal to those given by the outer solution. 

From the inner solution the effects of variations of Reynolds number can be 
worked out, and a brief illustration of this is given in the following section. 

3.4. Reynolds number effects 

Given a vortex core for which 02, U,lVm, EJV, and C,, = (p , -p , ) /&pV:  are 
specified, what are the effects of variations of the Reynolds number R = V, X ~ V  

on the core structure? Evidently the effects must be confined to the subcore. 
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As suggested in the previous subsection, Q is taken to be constant, independent 
of $; and, consequently, independent of R. Such a constant is in fact a measure 
of the size of a subcore, for, as can be seen in figure 8, the range of 5 over which 
viscous diffusion effects become small is roughly the same for different solutions 
of the subcore. 

From equations (16) and (7)) we get 

It follows that dB,/dR < 0, or that 8, decreases as R increases. 8, is a direct 
measure of the slenderness of the subcore: the larger the Reynolds number, 
the slenderer is the subcore. 

A number of trends can be deduced. Suppose the Reynolds number is increased 
from R to R’, so that 6; < 8,. From equations (7)) (8) and (lo), respectively, 
U ;  > U,, V ;  > V,, and p i  < p, .  Since U ;  > U,, equation (13) yields $i2 < 4:. 
From equations (17)) (13) and (23)) it appears that 

and from equations (25) and (26)) respectively, again with use of (13)) 

Now it can be checked from the tables that, for cl = 8 or 10, each of the expres- 
sions in square brackets in the above three equations is negative. Furthermore, 
p i  < p1  and V ;  > V,. Therefore the three equations yield ukax > u,,,, pLin < pmh, 
andpl,,, < pornin. Thus an increase of the Reynolds number yields, on the axis, 
an increase of the velocity and a lowering of both the static and total pressures. 
Alternatively, for any particular vortex core, the Reynolds number R = V,x/v 
grows with the distance x from the apex. Along the axis, therefore, the velocity 
increases, and the static and total pressures drop, with increasing distance from 
the apex. 

4. Comparison with experimental results 
The above theory has been employed to calculate the velocity and pressure 

fields within a particular vortex core. For the boundary conditions at the out- 
side edge of the core, numerical values based on Earnshaw’s measurements 
(1961) were used, so that the theoretical results are directly comparable with the 
experimental profiles of figures 3-5. The numerical results for u/V,, v/V, (u and 
v now are taken to refer also to the outer solution), C,, and C, = (p,, -p,)/&pV2, 
have been superimposed on the corresponding experimental results in figures 3-5. 
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The joining of the inner and outer solutions for u/Vm, v/Vm and w/W, is shown in 
figure 10, but this will be discussed in the final section rather than here. 

In  addition, the variation with the Reynolds number R = Vmx/v of Umax/Vm 
in subcores corresponding to the particular outer solution considered here has 
been calculated for R ranging from to 108. Values of R below lok5 were 
excluded because, with the present outer solution, errors in the inner solution are 
then likely to be appreciable. For example, in the experiment R = 2.22 x lo6, 

log,, €2 

FIGURE 9. Variation with the Reynolds number R of the 
velocity along the axis of the vortex core of 3 4. 

and this gives 4; N 0.2 and e N 0.4, whereas the theory requires 4; < 1 and 
8 < 1. For smaller R, 4; and e are still larger. It is thus perhaps questionable 
whether this comparison is a fair test of the theoretical inner solution. The 
resulting curve of umax/Vm is plotted in figure 9, together with the few available 
experimental results, and it can be seen that theory and experiment give similar 
upward trends of um,/Vm with increasing Reynolds number. 

Compare now the theoretical and experimental profiles of figures 3-5. The 
outer solution is seen to give results which agree fairly well with the experi- 
mental results. The static pressure profiles, outside the subcore, are in markedly 
good agreement. That there are some discrepancies may be attributed to the 
theoretical assumption that the flow field is inviscid, exactly axially symmetric, 
and exactly conical. On the other hand, the inner solution gives results which 
differ appreciably from the experimental results: the predictions are only quali- 
tatively correct. The theoretical velocity and pressure gradients in the subcore 
are too large, and the peaks are too pronounced. The theoretical subcore is too 
slender. Now, it does not seem likely that instrument errors, or too large a 
value of 4: or e, can account for the discrepancies. So, while the viscous diffusion 
outside the subcore and effects of the flow near the apex should not be overlooked, 
it is natural to question the assumption of laminar flow in the subcore. Measure- 
ments by Lambourne & Bryer (1959) in a similar leading-edge vortex have 
suggested that the flow in the core is turbulent. The poor agreement here also 
suggests this. If this is so, the laminar theory might still be applied, but only 
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in a limited way: theoretical and experimental results might be matched by the 
introduction of an eddy viscosity, for example as Newman (1959) has done. 
From experience with wakes, the introduction of an eddy viscosity into the 
theoretical results for laminar flow would give increased diffusion, or a smaller 
effective Reynolds number, and this would improve the agreement. 

100rls 100rls 

loo = i6e/e, 

FIGURE 10. Joining of the inner and outer solutions ($4) for (a)  the axial velocity u, 
( b )  the circumferential velocity w, and (c) the radial velocity w. 

5. Discussion 
First, the present work will be briefly summarized. Then, the joining of the 

inner and outer solutions, and the validity of the theory will be discussed. 
Finally, some extensions of the work will be considered. 

The theoretical results obtained stem from the type of vortex core model 
originally chosen. The essential features of the model were (i) that the flow is 
continuous androtational, and (ii) that viscous diffusion is confined to a relatively 
slender subcore. Allied with the assumption that the flow is axially symmetric 
and incompressible, these admitted outer and inner solutions for the core. For 
the outer solution the subcore was ignored and the flow was taken to be inviscid 
and conical. The results (3  2.1) were in simple logarithmic form. For the inner 
solution, which applied to the subcore, the flow was taken to be laminar, and 
approximations, some based on the boundary conditions and some analogous to 

15 Fluid Mech. 11 



226 M .  G. Hall 

those of boundary-layer theory, were made. The results of 3 3.3, in this case first 
approximations, appeared as similar solutions. Given the axial and circum- 
ferential velocities, the pressure, and the Reynolds number at the outside edge 
of the core, the velocity and pressure fields within the core can be calculated. 
The comparison with experimental results ( 5  4) showed fair agreement, except in 
the details of the subcore, and this does not necessarily imply a fault in the model 
chosen, because it seems likely that the flow in the subcore of the experiment 
was significantly turbulent. Over-all qualitative agreement was good. 

Figure 10 shows the joining of the profiles of the axial (u), circumferential (v), 
and radial (w) components of velocity, respectively, for the particular vortex 
core of 3 4. For u and v, the magnitudes given by the inner and outer solutions at 
Cl = 8 were equated. Each join is seen to be smooth: the gradient is so nearly 
continuous that the extension of the inner solution to Q = 10 virtually coin- 
cides with the outer solution. Cl could equally well have been taken to be 10, say, 
but could not have been taken much larger without violating the condition E 

( = #:log cl) < 1. For w, the only boundary condition satisfied was w = 0 at 
5 = 0, and yet the inner and outer solutions very nearly coincide at 6 equal to 
8 or 10. Had the Reynolds number been larger, even smoother joins could have 
been obtained. 

The smoothness of the joins justifies two assumptions that were introduced 
tentatively. The first is the approximation made for w in equation (14c). The 
second is the vital simplifying assumption (33.1) that the variations of axial 
velocity in the subcore are small, or E < 1: since the join is smooth, it can 
be said that at  the edge of some region for which e < 1 does hold, viscous 
diffusion is indeed negligible, and thus there is a sound physical basis for the 
assumption. 

The above points are related to the internal consistency of the theory. For 
example, it  can be shown from equation (23) that f ( = u/U,) = 1 + O(#~log<l), 
as is required by (11 a) and (12). Again, it can be shown from the outer solution 
that as 0 -+ 0 equations ( 2 )  can be reduced to the equations obtained by omitting 
the viscous terms in (14). Therefore, with increasing distance from the axis, 
a solution of (14) must tend to one given by (2)-until E and the errors in equations 
(14) become appreciable and the solutions diverge. For sufficiently large Reynolds 
numbers there is an intermediate region, where diffusion is negligible and before 
the solutions diverge, in which a join can be made. This join specifies an approxi- 
mate solution. The exploitation of the smallness of the variations of the axial 
velocity in the subcore thus enables an approximate solution of the Navier- 
Stokes equations to be obtained; but it makes an intermediate join necessary, 
and the solution remains approximate in the limit of infinite Reynolds number, 
unlike boundary-layer solutions which become exact. 

A number of extensions of the present work may be considered. The author 
has obtained (1959) outer solutions for which the pressure field was not neces- 
sarily conical, nor the radial velocity on the axis necessarily zero. For this more 
complicated problem it was convenient to introduce a stream function $, 
defined (in the present notation) by - 

u = 2$ t- ea+pe, w = evlC//ae. 
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It turned out that V 2  = K$, with R = const., and the problem reduced to that 
of solving the ordinary non-linear equation 

where, in order that the velocity field be conical, 

I = x rx) = const. 
2~ ax e=const. 

It was found, other conditions being equal, that a positive pressure gradient 
ap/ax along O2 reduced the axial velocity within the core, increased the circum- 
ferential velocity, reduced the radial velocity, and increased the magnitude of 
the pressure difference ( p 2 - p ) .  A negative pressure gradient had the reverse 
effect. The relaxation of the condition of zero radial velocity at the axis left the 
boundary condition W,, which is a measure of the rate of flow into the core, free 
to be varied. It was found that small variations in W, produced comparatively 
large changes in the flow field within the core. 

It should be mentioned that if the field for U and V is paraboloidal, depending 
on 0 = r/xn, n = const., instead of conical and dependent on 8, then (if one 
supposes that x ~ ~ - ~  = O(1) and @d$/d@ = O($) )  an equation identical in form 
to ( 2 8 )  is obtained, with 0 replacing 8, and 

2 
L = ~ (3) = const. 

2nP ax @=const. 

replacing 1. It is still true that U = 21// + @dllf/d@ and V 2  = K$, but 

W = nxn-102d$/d0. 

Therefore the solutions for U and V in a paraboloidal field, as functions of 0, 
are identical to the solutions for u and V in a conical field, as functions of 0, 
for L = 1. 

Should practical reasons require the calculation of solutions for small per- 
turbations of conical or paraboloidal field, or axial symmetry, this should be 
straightforward. 

The present results also provide a basis for the investigation of ‘vortex 
breakdown’, an abrupt change in the flow from the pattern considered here, at 
some position downstream of the apex. This has been studied experimentally 
by Elle (1958)) Peckham (1958)) and Gray (unpublished), and theoretically by 
Squire (1960) and Jones (1960) who suggest plausible, but different, explanations 
for the phenomenon. 

Finally, a first approximation to the temperature distribution in a real vortex 
core may be obtained by substituting the (incompressible) results for the velocity 
components into the energy equation, for example as Rott (1959) has done. This 
would constitute the first step in an iterative solution for a compressible vortex 
core. 

15-2 
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